Recursive formula for $\psi ^g-\lambda _1\psi ^{g-1}+\cdots +(-1)^g\lambda _g$ in $\overline {\mathcal {M}}_{g,1}$
نویسندگان
چکیده
منابع مشابه
$ast$-K-g-Frames in Hilbert $mathcal{A}$-modules
In this paper, we introduce the concepts of $ast$-K-g-Frames in Hilbert $mathcal{A}$-modules and we establish some results.
متن کامل$G$-Frames for operators in Hilbert spaces
$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...
متن کاملA RECURSIVE EQUATIONS BASED REPRESENTATION FOR THE G/G/m QUEUE
New recursive equations designed for the G/G/m queue are presented. These equations describe the queue in terms of recursions for the arrival and departure times of customers, and involve only the operations of maximum, minimum and addition.
متن کاملG-Frames, g-orthonormal bases and g-Riesz bases
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.
متن کاملOn finite $X$-decomposable groups for $X={1, 2, 3, 4}$
Let $mathcal {N}_G$ denote the set of all proper normal subgroups of a group $G$ and $A$ be an element of $mathcal {N}_G$. We use the notation $ncc(A)$ to denote the number of distinct $G$-conjugacy classes contained in $A$ and also $mathcal {K}_G$ for the set ${ncc(A) | Ain mathcal {N}_G}$. Let $X$ be a non-empty set of positive integers. A group $G$ is said to be $X$-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2009
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-09-10018-7